Report of the Lake Erie Yellow Perch Task Group

March 2024

Members:

Megan Belore (Co-chair)
Andrew Briggs
Andy Cook
Matt Faust
Mike Hosack
Peter Jenkins
Carey Knight
Heather Luken
Brian Schmidt
Sara Thomas (Co-chair)
Michael Thorn
Pascal Wilkins
Yingming Zhao

Ontario Ministry of Natural Resources and Forestry
Michigan Department of Natural Resources
Ontario Ministry of Natural Resources and Forestry
Ohio Department of Natural Resources
Pennsylvania Fish and Boat Commission
Ohio Department of Natural Resources
Michigan Department of Natural Resources
Ontario Ministry of Natural Resources and Forestry
New York Department of Environmental Conservation
Ontario Ministry of Natural Resources and Forestry

Presented to:

Standing Technical Committee
Lake Erie Committee
Great Lakes Fishery Commission

Citation:

Yellow Perch Task Group (YPTG). 2024. Report of the Yellow Perch Task Group, March 2024. Presented to the Standing Technical Committee, Lake Erie Committee of the Great Lakes Fishery Commission. Ann Arbor, Michigan, USA.

Table of Contents

Introduction 1
Charge 1: 2023 Fisheries Review and Population Dynamics 1
Age Composition and Growth 4
Statistical Catch-at-Age Analysis 4
2024 Population Size Projection 6
Charge 2: Harvest Strategy and Recommended Allowable Harvest (RAH) 7
Charge 3: Utilize existing population models to produce the most scientifically defensible and reliable method for estimating and forecasting abundance, recruitment, and mortality. 9
Charge 4. Supply needed technical support throughout the upcoming YPMP review process 10
Acknowledgments 11
Literature Cited 11

Introduction

From April 2023 through March 2024 the Yellow Perch Task Group (YPTG) addressed the following charges:

1. Maintain and update the centralized time series of datasets required for population models and assessment including:
a. Fishery harvest, effort, age composition, biological and stock parameters.
b. Survey indices of young-of-year, juvenile and adult abundance, size-at-age and biological parameters.
c. Fishing harvest and effort by grid.
2. Report Recommended Allowable Harvest (RAH) levels for LEC TAC decisions.
3. Ensure population models are current and produce the most scientifically defensible and reliable method for estimating and forecasting abundance, recruitment, and mortality.
a. Evaluate the impact of recruitment indices on ADMB model results.
b. Evaluate ADMB model parameter sensitivity.
4. Supply needed technical support throughout the upcoming Yellow Perch Management Plan (YPMP) review process.

Charge 1: 2023 Fisheries Review and Population Dynamics

The lakewide total allowable catch (TAC) of Yellow Perch in 2023 was 6.573 million pounds. This allocation represented a 9% decrease from a TAC of 7.185 million pounds in 2022. For Yellow Perch assessment and allocation, Lake Erie is partitioned into four management units (MUs; Figure 1.1). The 2023 TAC allocation was $2.430,0.477,3.082$, and 0.584 million pounds for MUs 1 through 4, respectively. In March 2023 the Lake Erie Committee (LEC) applied the harvest policy within the Yellow Perch Management Plan to set the TAC. For MU1, the LEC set the TAC equal to 2.430 million pounds, which was a 20% decrease from 2022. In MU2, the target fishing mortality rate was reduced to $\mathrm{F}=0.106$, lowering the mean RAH and range. The target fishing mortality rate was reduced to ensure the spawning stock biomass in 2024 would not fall below the limit reference point, $\mathrm{B}_{\text {msy, }}$ with a probabilistic risk tolerance of 0.20 (i.e., P^{*}). For MU2, the LEC set the TAC at 0.477 million pounds, which was equal to the mean RAH, representing an 11% decrease from 2022. For MU3, the LEC set the TAC at the same amount as the 2022 TAC (3.082 million pounds). This was slightly lower than the mean RAH (3.543 millions pounds) due to uncertainty about the MU3 abundance estimates. In MU4, the LEC set the TAC at 0.584 million pounds, which was the mean RAH and was 11% higher than the 2022 TAC.

The lakewide harvest of Yellow Perch in 2023 was 4.305 million pounds, or 65% of the total 2023 TAC. This was a 27% increase from the 2022 harvest of 3.400 million pounds. Harvest from MUs 1 through 4 was $2.376,0.287,1.236$, and 0.406 million pounds, respectively (Table 1.1). The portion of TAC harvested was $98 \%, 60 \%, 40 \%$, and 70%, in MUs 1 through 4, respectively. In 2023, Ontario harvested 2.523 million pounds, followed by Ohio (1.554 million lbs.) , Michigan (0.104 million Ibs.), New York (0.069 million Ibs.) , and Pennsylvania (0.056 million lbs.).

Ontario's fraction of allocation harvested was 103\% in MU1, 97\% in MU2, 60\% in MU3, and 99\% in MU4 (see paragraph below regarding Ontario's harvest reporting and commercial ice allowance policy). Ohio fishers attained 103% of their TAC in the western basin (MU1), 29\% in the west central basin (MU2), and 22\% in the east central basin (MU3). Michigan anglers in MU1 attained 47% of their TAC. Pennsylvania fisheries harvested 12% of their TAC in MU3 and 2\% of their TAC in MU4. New York fisheries attained 38\% of their TAC in MU4. Ontario's portion of the lakewide Yellow Perch harvest in 2023 was 59\% (Table 1.1). Ohio's proportion of lakewide harvest was 36%, and harvest in Michigan, Pennsylvania, and New York waters combined represented around 5\% of the lakewide harvest in 2023.

Ontario continued to employ a commercial ice allowance policy implemented in 2002, by which 3.3% is subtracted from commercial landed weight. This step was taken so that ice was not debited towards fishers' quotas. Ontario's landed weights in the YPTG report have not been adjusted to account for ice content. Ontario's reported Yellow Perch harvest in tables and figures is represented exclusively by the commercial gill net fishery. Yellow Perch sport harvest from Ontario waters is assessed periodically, which last occurred in 2014, but is not reported here. Reported sport harvests for Michigan, Ohio, Pennsylvania, and New York are based on creel survey estimates. Ohio, Pennsylvania, and New York trap net harvest and effort are based on commercial catch reports of landed fish. Additional fishery documentation is available in annual agency reports.

Harvest, fishing effort, and fishery harvest rates are summarized from 2014 to 2023 by management unit, year, agency, and gear type in Tables 1.2 to 1.5. Trends across a longer time series (1975 to 2023) are depicted graphically for harvest (Figure 1.2), fishing effort (Figure 1.3), and harvest rates (Figure 1.4) by management unit and gear type. The spatial distributions of harvest (all gears) and effort by gear type for 2023 in ten-minute interagency grids are presented in Figures 1.5 through 1.8.

Ontario's Yellow Perch harvest from large mesh (3 inches or greater stretched mesh) gill nets in 2023 was $2 \%, 10 \%, 2 \%$, and $<1 \%$ of the gill net harvest in management units $1-4$,
respectively. Harvest, effort, and catch per unit effort from (1) small mesh Yellow Perch effort ($2.25^{\prime \prime}=<$ stretched mesh<3") and (2) larger mesh sizes, are distinguished in Tables 1.2 to 1.5. Harvest from targeted small mesh gill nets in 2023 increased by 32% in MU1, 24% in MU2, 4% in MU3 and 7\% in MU4, relative to 2022. Ontario trap nets, which primarily target white bass, harvested zero yellow perch in 2023. Ontario commercial Rainbow Smelt trawlers incidentally caught Yellow Perch in management units 3 and 4, and this harvest is included in Tables 1.4 and 1.5. In 2023, 11 pounds of Yellow Perch were harvested in trawl nets in MU3 and 453 pounds were harvested in MU4.

Targeted (i.e., small mesh) gill net effort in 2023 decreased from 2022 effort in MU1 (16%) and increased in units MU2, MU3 and MU4 by 8\%, 19\%, and 25\% respectively. Targeted gill net harvest rates in 2023 increased by 58\% and 15\% relative to 2022 rates in MU1 and MU2 respectively, while decreasing in MU3 by 12\%, and MU4 by 15\% (Figure 1.4).

Compared to 2022, sport harvest in 2023 in U.S. waters increased by 76\% in MU1 ($944,587 \mathrm{lbs}$), while decreasing 43% in MU2 ($11,415 \mathrm{lbs}$), 26% in MU3 ($5,009 \mathrm{lbs}$) and 20% in MU4 (55,890 lbs.) (Figure 1.2). Angling effort in U.S. waters during 2023 was highest in MU1 and lowest in MU2. Angler effort in 2023 increased 39\% compared to 2022 in MU1, and decreased 85\%, 22\%, and 34\% in MU2, MU3 and MU4 respectively (Figure 1.3). In 2023, angling effort in U.S. waters of MU3 at 4,780 hours was at its lowest in the time series, while effort of 4,011 hours in MU2 was the second lowest in time series (Figure 1.3).

Sport fishing harvest rates are commonly expressed as fish harvested per angler hour for those seeking Yellow Perch. These harvest rates are presented in Tables 1.2 to 1.5. Compared to 2022 rates, harvest per angler hour increased in Michigan (+101\%) and Ohio (+43\%) waters of MU1. In the central basin, the sport angler harvest rate increased in the Ohio waters of MU2 ($+35 \%$) although the rate of 0.7 fish/hour is still one of the lowest in the time series. In MU3, the sport harvest rate increased (+209\%) from the second lowest catch rate in the time series in the Ohio waters, while decreasing in Pennsylvania (-89\%) waters of MU3 to the lowest value observed in the time series. Sport harvest rates in both MU2 and MU3 should be interpreted with caution as values are based on small sample sizes and continue to reflect low sport effort in the central basin. In MU4, harvest rates increased in New York waters (+34\%) and Pennsylvania waters, where the catch rate increased from near 0 fish/hour to 1.3 fish per/hour.

Trap net harvest increased by 120% in MU1, and 1% in MU3, while decreasing by 34% in MU2 and 7\% in MU4 compared to 2022 (Tables 1.2 to 1.5). Trap net effort (lifts) in 2023 decreased in MU2, MU3, and MU4 by 82\%, 19\%, and 11\% respectively, relative to 2022 trap net effort, while increasing 35% in MU1. Total trap net effort during 2023 was highest in MU1 at

6,696 lifts. Trap net effort in MU2 during 2023 (289 lifts) was $4^{\text {th }}$ lowest in the 1981-2023 time series reflecting the reduced 2023 TAC in MU2. Trap net harvest rates increased from 2022 rates by $62 \%, 261 \%, 26 \%$, and 4% in MU1, MU2, MU3 and MU4, respectively. The trap net harvest rate in MU2 increased to $102 \mathrm{~kg} / \mathrm{lift}$ in 2023 compared to $28 \mathrm{~kg} / \mathrm{lift}$ in 2022 which was the lowest value observed since 1999.

Age Composition and Growth

Lakewide, age-2 fish (2021 YC) contributed the most to the Yellow Perch harvest (43\%), followed by age-3 fish (2020 YC; 29\%), with age-4, age-5, and age-6-and-older fish contributing $22 \%, 4 \%$, and 2%, respectively; Table 1.6). In MU1, age-2 fish (2021 year class, 61\%) contributed most to the fishery, followed by age-3 (2020 year class, 26\%) and age-4 fish (2019 year class, 8\%). In MU2, age-4 fish (2019 year class, 38\%), age-2 fish (2021 year class, 29\%) and age-3 fish (2020 year class 26\%) contributed most to the fishery. In MU3, age-4 fish (2019 year class, 47\%) contributed most to the fishery, followed by age-3 fish (2020 year class, 29\%), and age-2 fish (2021 year class, 16\%). In MU4, age-3 (2020 year class, 52\%) contributed most to the fishery, followed by age-4 fish (2019 year class, 28\%), and age-2 fish (2021 year class, 13\%).

The task group continues to update Yellow Perch growth data in: (1) weight-at-age values recorded annually in the harvest and (2) length- and weight-at-age values taken from interagency trawl and gill net surveys. These values are applied in the calculation of population biomass and the forecasting of harvest in the approaching year. Therefore, changes in weight-at-age factor into the changes in overall population biomass projections and determination of recommended allowable harvest (RAH).

Statistical Catch-at-Age Analysis

Population size for each management unit was estimated by statistical catch-at-age analysis (SCAA) using the Auto Differentiation Model Builder (ADMB) computer program (Fournier et al. 2012). In 2024, the YPTG continued to use the ADMB model developed by the Quantitative Fisheries Center (QFC) at Michigan State University (referred to as the Peterson-Reilly or PR model) as part of the Lake Erie Percid Management Advisory Group (LEPMAG) review of Yellow Perch management on Lake Erie.

The PR model uses harvest and effort data from commercial gill net, commercial trap net, and recreational fisheries within each MU. Survey catch-at-age of age-2 and older fish from gill net and trawl surveys are also incorporated. In addition, age-0 and age-1 recruitment data are incorporated into the model as a recruitment index. The PR model estimates selectivity for all ages in the fisheries and surveys. There is a commercial gill net selectivity block beginning in 1998. Catchabilities for all fisheries and surveys vary annually as a correlated random walk. The model is fit to total catch and proportions-at-age (multinomial age composition) as separate data sets.

Running the PR model is a three-step process. In the first step, an ADMB model without recruitment data is run iteratively until the maximum effective sample size for the multinomial age composition stabilizes (i.e., does not change by more than 1-2 units). Second, age-2 abundance estimates from the first model are combined with age-0 and age-1 recruitment data (from trawl and gill net assessment surveys) in a multi-model inference (MMI) R-based model to determine parameters for estimating recruitment. Recruitment data from the last nine years are removed from the model to minimize possible retrospective effects. Further, years with missing data in one or more data sets are removed from all data sets. Surveys missing data for the projection year (e.g., 2020 year class in the 2022 TAC year) are also removed from the analysis. A list of all possible non-redundant models is generated from the survey data and fit using the R-based glmulti package (Calcagno 2013). All models falling within 2 AIC units of the best model are used to generate the model-averaged coefficients. Surveys are not weighted equally in the final modelaveraged coefficients; each model may contain a different set of surveys and the models with lower AIC values are weighted more heavily and have greater influence on the recruitment predictions. Parameter estimates for the model-averaged coefficients for each MU are detailed in Appendix Table 2. A recruitment index is generated to estimate age-2 fish for each year class available in the recruitment data, using the age-0 and age- 1 survey data. This process is repeated using just age-0 data, which is only used to estimate recruitment in two years' time. Data from trawl and gill net index recruitment series for the time period examined are presented in Appendix Table 3, and a key that summarizes abbreviations used for the trawl and gill net series is presented in Appendix Table 4.

In the third step, the recruitment index is added to the ADMB model, and this data set is used to inform age-2 abundance estimates within the objective function. This model is then run iteratively until the maximum effective sample size for the multinomial age composition stabilizes. Estimates of population size, from 2004 to 2023, and projections for 2024, are presented in Table 1.7. Abundance, biomass, survival, and exploitation rates are presented by management unit
graphically for 1975 to 2023 in Figures 1.9 to 1.12. Mean weights-at-age from assessment surveys were applied to abundance estimates to generate population biomass estimates (Figure 1.10). Projections of abundance and biomass in 2024 are included in Figures 1.9 and 1.10. Population abundance and biomass estimates are critical to monitoring the status of stocks and determining recommended allowable harvest.

Abundance estimates should be interpreted with several caveats. Inclusion of abundance estimates from 1975 to 2023 implies that the time series are continuous. Lack of data continuity for the entire time series weakens the validity of this assumption. Survey data from multiple agencies are represented only in the latter part of the time series (since the late 1980s); methods of fishery data collection have also varied. Some model parameters, such as natural mortality, are constrained to constants. This technique lessens our ability to directly compare abundance levels across three decades. In addition, with SCAA the most recent year's population estimates inherently have the widest error bounds, which is to be expected for cohorts that remain at-large under less than full selectivity in the population.

In the SCAA model, population estimates are derived by minimizing an objective function weighted by data sources, including fishery effort, fishery catch, and survey catch rates. In 20112012, the YPTG group determined data weightings (referred to as lambdas in ADMB) using an expert opinion approach for evaluating potential sources of bias in data sets that could negatively influence model performance (YPTG 2012). These data weightings were used during 2024 and are presented in Appendix Table 1. The additional recruitment index (generated from the glmulti process) was given a lambda weighting of 1 during the LEPMAG process.

2024 Population Size Projection

The SCAA model was used to project age-2-and-older Yellow Perch stock size in 2024 (Table 1.7). Standard errors and ranges for 2024 projections are provided for each age, and descriptions of minimum, mean, and maximum population estimates refer to the age-specific mean estimates minus or plus one standard deviation (Table 2.2).

Stock size estimates for 2023 (Table 1.7) were higher than those projected last year in MU1, MU2 and MU3, and slightly lower in MU4 (YPTG 2023). Increases in MU1, MU2 and MU3 were due to higher estimates of age-2 fish compared to those projected last year. Whereas the estimates of ages 3 and older fish were lower than those projected last year in MU1, MU2 and MU3. The lakewide projection of age-2 and older fish using 2022 data was 155.251 million age-2 and older Yellow Perch in 2023 (YPTG 2023), while estimates using 2023 data in the 2024 model
run estimated 2023 abundance of age-2 and older Yellow Perch at 208.004 million fish. Lakewide abundance of age-2-and-older Yellow Perch in 2024 is projected to be 168.673 million fish, a decrease of 19% from 2023 estimates.

Abundance projections for 2024 are $59.552,44.314,56.598$, and 8.210 million age- 2 -andolder Yellow Perch in management units 1 through 4, respectively. Abundance of age-2-and-older Yellow Perch in 2024 are projected to decrease 19\%, 16\%, 23\%, and 3\% in MU1, MU2, MU3, and MU4 respectively, relative to the 2023 abundance estimates (Table 1.7, Figure 1.9).

Projected age-2 Yellow Perch recruitment in 2024 (the 2022 year class) was 21.421, $9.836,11.978$, and 3.860 million fish in management units 1 through 4, respectively (Table 1.7.). Age-3-and-older Yellow Perch abundance in 2024 is projected to be $38.130,34.478,44.620$, and 4.350 million fish in MUs 1 through 4, respectively. Abundance estimates for age-3-and-older Yellow Perch in 2024 are projected to increase from the 2023 estimates in MU1, MU2 and MU3 by $224 \%, 113 \%$, and 87%, respectively. These increases are largely due to high estimates of age-2 fish in 2023, which are projected forward to age-3 fish in 2024. Abundance for age-3-andolder Yellow Perch for 2024 in MU4 are projected to decrease 13\% from the 2023 estimates.

As a function of population abundance and mean weight-at-age from fishery-independent surveys, total biomass of age-2-and-older Yellow Perch for 2024 are projected to decrease in management units $1-4$ by $18 \%, 12 \%, 7 \%$ and 3%, respectively, compared to 2023 estimates (Figure 1.10).

Estimates of Yellow Perch survival for age-3-and-older in 2023 were $30 \%, 62 \%, 51 \%$, and 44\% in MUs 1 through 4, respectively (Figure 1.11). Estimates of Yellow Perch survival in 2023 for age-2-and-older fish were: 52% in MU1, 65% in MU2, 61% in MU3, and 51% in MU4. Estimated exploitation rates of ages-3-and-older Yellow Perch in 2023 were $47 \%, 6 \%, 20 \%$, and 29% in management units 1 through 4, respectively. Estimates of Yellow Perch exploitation for ages-2-and-older fish in 2023 were: 19\% in MU1, 2% in MU2, 7% in MU3, and 19\% in MU4 (Figure 1.12). Exploitation rate for ages-2-and-older fish in MU2 during 2021, 2022 and 2023 were the lowest in the 49 year time series.

Charge 2: Harvest Strategy and Recommended Allowable Harvest (RAH)

In 2024 the YPTG applied the harvest control rules finalized by the LEC and LEPMAG in 2020. The harvest control rules are comprised of:

- Target fishing mortality as a percent of the fishing mortality at maximum sustainable yield ($\mathrm{F}_{\mathrm{msy}}$)
- Limit reference point of the biomass at maximum sustainable yield ($\mathrm{B}_{\mathrm{msy}}$)
- Probabilistic risk tolerance, P-star, $\mathrm{P}^{*}=0.20$
- A limit on the annual change in TAC of $\pm 20 \%$ (when $P\left(S S B<B_{\text {msy }}\right)<P^{*}$); see Yellow Perch Management Plan, Lake Erie Committee, 2020.

Target fishing rates and limit reference points are estimated annually using SCAA model results. Estimating reference points and recommended allowable harvest is a three-step process. First, estimated recruitment and spawning stock biomass from the SCAA model, along with maturity, weight, and average selectivity at age, are entered into an ADMB model that: 1) estimates the parameters of a Ricker stock-recruitment model and 2) calculates the theoretical spawning stock biomass without fishing (SSB_{0}). The stock-recruitment relationships for management units 1,2 , and 3 , are fit using a hierarchical framework, while management unit 4 is fit independently. In the second step, maturity, weight, and average selectivity at age, along with the parameters of the stock-recruitment relationship are entered in an R-based model. This model estimates $F_{m s y}$ and $B_{m s y}$ for the harvest control rule. Finally, $F_{m s y}, F_{\text {target }}$ (as a percent of $F_{m s y}$), and $B_{\text {msy }}$ (as a percent of $S S B_{0}$), are entered into the SCAA model to estimate RAH in each management unit. If the model estimates that fishing at $F_{\text {target }}$ meets or exceeds a 0.20 probability $\left(\mathrm{P}^{*}\right)$ that the projected spawning stock biomass will be less than the limit reference point ($B_{\text {msy }}$), then the fishing rate is reduced until the probability is less than 0.20 . Values of $S S B_{0}$, $B_{\text {msy }}, F_{\text {msy }}$, and $F_{\text {target }}$ for each management unit can be found in Table 2.1. Target fishing rates are applied to population estimates and their standard errors to determine minimum, mean, and maximum RAH values for each management unit (Tables 2.2 and 2.3). In addition, RAH values may be subject to a $\pm 20 \%$ limit on the annual change in TAC when $P(S S B<B m s y)<0.20$ (ie: when P^{*} harvest control rule is not invoked).

With the addition of 2023 data, the limit reference point estimate, $B_{\text {msy }}$ increased from 1.813 M to 2.193 M kg in MU1 while the target fishing rate, $\mathrm{F}_{\text {target }}$ decreased from 0.540 to 0.431 . In MU2, $B_{\text {msy }}$ increased marginally from 3.871 to 3.988 M kg and $F_{\text {target }}$ increased from 0.588 to 0.620. In MU3, $B_{\text {msy }}$ decreased slightly from 3.714 to 3.705 M kg and $F_{\text {target }}$ decreased from 0.640 to 0.576 . In MU4, $B_{\text {msy }}$ decreased from 0.483 to 0.462 M kg and $\mathrm{F}_{\text {target }}$ decreased from 0.558 to 0.544 (Table 2.1).

The Yellow Perch Management Plan (YPMP) includes a provision on how to estimate RAH in a TAC year where P^{*} is not invoked, but P^{*} has persisted for multiple years prior. In
this case the LEC will determine what the TAC would have been using the target F and the 20% TAC constraint for each of the years during that period, thus establishing what can be considered an "assumed TAC". The previous years assumed TAC can then be used as a benchmark for the implementation of the 20\% TAC constraint and a new TAC moving forward (LEC, 2020). In 2024, the P value in MU2 is 0.11, marking the first year that MU2 has not invoked the P^{*} rule since the YPMP took effect in 2019. Following guidance from the YPMP the maximum 2024 RAH in MU2 is 2.748 million pounds. However, there is evidence of retrospective patterns in SCAA abundance estimates (see Charge 3). Also, there are conflicting poor status indicators in MU2 and no indication of a large year class recruiting to the fishery. Therefore, a precautionary approach is warranted in MU2, and the YPTG recommends holding the 2024 MU2 TAC at the 2023 level (0.477 million pounds) or increasing by 20% (0.572 million pounds). The YPMP permits the LEC to deviate from the harvest control rules in cases where there is compelling evidence to indicate the sustainability of the yellow perch population is at risk, or if there is strong social or economic rationale to do so. If the LEC chooses to deviate from the harvest control rules, clear and transparent justification will be provided to stakeholders (LEC, 2020).

Quota allocation by management unit and jurisdiction for 2024 was determined by the same methods applied in 2009-2023, using GIS applications of jurisdictional surface area of waters within each MU (Figure 2.1). The allocation of shares by management unit and jurisdiction are:

Allocation of TAC within Management Unit and Jurisdiction, 2024:						
MU1:	ONT	40.6%	OH	50.3%	MI	9.1%
MU2:	ONT	45.6%	OH	54.4%		
MU3:	ONT	52.3%	OH	32.4%	PA	15.3%
MU4:	ONT	58.0%	NY	31.0%	PA	11.0%

Charge 3: Utilize existing population models to produce the most scientifically defensible and reliable method for estimating and forecasting abundance, recruitment, and mortality.

The YPTG has been using the current configuration of the SCAA ADMB model for 6 years. It has been found that abundance estimates in the last year of the model often decrease between the first estimate in the model and subsequent years estimates in the model. On average age- 2
estimates for the various MUs decrease between 11% and 40% from the first time they are estimated by the model to the second time they are estimated by the model. Further, age- 2 estimates decrease an average of 29% to 63% between the first time they are estimated by the model to the third time they are estimated by the model, with the lowest change occurring in MU4 and the highest in MU1. In this year's model run the age-2 abundance values in 2023 are the first model estimates of this year class. The 2023 age-2 estimates are projected forward to age-3 abundance in 2024 using survival estimates. This leads to a potential overestimate of age-3 fish in 2024, which is used in RAH calculations.

Reasons for this retrospective pattern are unknown. The model estimates catchability using a random walk. Changes in catchability estimates between model runs can contribute to changes in abundance estimates, with increases in catchability leading to reduced abundance estimates. Patterns of declining catchability in surveys may be contributing to variable abundance estimates. In addition, constant selectivity in the model may contribute to different abundance estimates, as changes in selectivity will not be recognized by the model when they occur. There has been an increase in size at age of yellow perch in recent years, particularly in MU1 and MU2, which may be leading to changes in selectivity not observed in the model. Additional work is required to evaluate retrospective patterns in model results and their causes.

Charge 4. Supply needed technical support throughout the upcoming YPMP review process

The Yellow Perch Management Plan (YPMP) runs from 2020 to 2024. A review of the YPMP will evaluate the existing Yellow Perch assessment model and the harvest control rule. To begin the review, YPTG met with the Lake Erie Committee and Michigan State University's Quantitative Fisheries Center (QFC) to discuss several aspects of the YPMP to incorporate into the review. Some of the items discussed included: the use of the recruitment survey data in the assessment model, model convergence issues and retrospective patterns, methods used to estimate catchability and selectivity, the data used in the stock recruit relationship to estimate the reference points, and the harvest control rules. At this meeting the QFC recommended implementing the statistical catch-at-age models using Template Model Builder (TMB) to alleviate some concerns relating to the ADMB model. Converting the statistical catch-at-age models to TMB will be incorporated into the YPMP review which may take up to two years.

Acknowledgments

The task group members wish to thank the following people for providing support to the task group during the past year:

- Dr. Travis Brenden of Michigan State University's Quantitative Fisheries Center
- Ann Marie Gorman of the Ohio Department of Natural Resources, Division of Wildlife
- Karen Soper of the Ontario Ministry of Natural Resources and Forestry

The YPTG report could not be completed without the contributions of all Lake Erie staff from the Michigan Department of Natural Resources, Ohio Division of Wildlife, Pennsylvania Fish and Boat Commission, New York Department of Environmental Conservation, US Geological Survey - Biological Resources Division, and the Ontario Ministry of Natural Resources and Forestry. In addition, the YPTG expresses our thanks to the Great Lakes Fishery Commission for their continued support.

Literature Cited

Calcagno, V. 2013. glmulti: Model Selection and Multimodel Inference. R package version 1.0.7. http://CRAN.R-project.org/package=glmulti.

Fournier, D.A., H.J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M.N. Maunder, A. Nielsen, and J. Sibert. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27:233-249.

Lake Erie Committee (LEC). 2020. Lake Erie Yellow Perch Management Plan 2020-2024. Lake Erie Committee of the Great Lakes Fishery Commission. Ann Arbor, Michigan, USA.

Yellow Perch Task Group (YPTG). 2012. Report of the Yellow Perch Task Group, March 2012. Presented to the Standing Technical Committee, Lake Erie Committee of the Great Lakes Fishery Commission. Ann Arbor, Michigan, USA.

Yellow Perch Task Group (YPTG). 2023. Report of the Yellow Perch Task Group, March 2023. Presented to the Standing Technical Committee, Lake Erie Committee of the Great Lakes Fishery Commission. Ann Arbor, Michigan, USA.

Table 1.1. Lake Erie Yellow Perch harvest in pounds by management unit (Unit) and agency, 2014-2023

	Year	Ontario*		Ohio		Michigan		Pennsylvania		New York		Total Harvest
		Harvest	\%									
Unit 1	2014	620,667	56	391,361	36	87,511	8	--	--	--	--	1,099,539
	2015	541,938	48	485,744	43	94,225	8	--	--	--	--	1,121,907
	2016	947,052	42	886,068	40	397,044	18	--	--	--	--	2,230,164
	2017	1,277,587	46	1,239,575	45	255,605	9	--	--	--	--	2,772,767
	2018	1,262,229	54	956,016	41	107,789	5	--	--	--	--	2,326,034
	2019	847,476	69	357,533	29	15,745	1	--	--	--	--	1,220,754
	2020	857,561	64	391,231	29	84,613	6	--	--	--	--	1,333,405
	2021	959,259	58	625,787	38	69,575	4	--	--	--	--	1,654,621
	2022	770,476	51	658,935	44	67,667	5	--	--	--	--	1,497,078
	2023	1,016,545	43	1,254,927	53	104,388	4	--	--	--	--	2,375,860
Unit 2	2014	1,679,175	52	1,543,226	48	--	--	--	--	--	--	3,222,401
	2015	1,489,433	57	1,131,993	43	--	--	--	--	--	--	2,621,426
	2016	1,283,379	62	792,869	38	--	--	--	--	--	--	2,076,248
	2017	1,498,437	70	643,554	30	--	--	--	--	--	--	2,141,991
	2018	1,271,365	69	559,122	31	--	--	--	--	--	--	1,830,487
	2019	740,490	63	433,477	37	--	--	--	--	--	--	1,173,967
	2020	407,553	60	268,213	40	--	--	--	--	--	--	675,766
	2021	205,377	63	121,200	37	--	--	--	--	--	--	326,577
	2022	177,919	60	117,860	40	--	--	--	--	--	--	295,779
	2023	210,716	73	76,269	27	--	--	--	--	--	--	286,985
Unit 3	2014	2,668,921	70	979,937	26	--	--	168,690	4	--	--	3,817,548
	2015	2,131,211	77	572,736	21	--	--	77,558	3	--	--	2,781,505
	2016	2,020,470	76	522,549	20	--	--	107,972	4	--	--	2,650,991
	2017	2,027,235	77	504,223	19	--	--	107,335	4	--	--	2,638,793
	2018	1,807,645	78	460,797	20	--	--	54,085	2	--	--	2,322,527
	2019	1,328,966	79	320,756	19	--	--	38,953	2	--	--	1,688,675
	2020	478,837	71	175,550	26	--	--	18,022	3	--	--	672,408
	2021	704,636	75	220,127	23	--	--	18,938	2	--	--	943,701
	2022	932,682	77	211,444	18	--	--	63,872	5	--	--	1,207,998
	2023	959,420	78	222,369	18	--	--	54,538	4	--	--	1,236,327
Unit 4	2014	485,899	74	--	--	--	--	16,671	3	149,669	23	652,239
	2015	297,716	77	--	--	--	--	10,055	3	76,597	20	384,368
	2016	231,063	87	--	--	--	--	6,791	3	28,078	11	265,932
	2017	179,730	76	--	--	--	--	16,078	7	39,598	17	235,407
	2018	272,733	90	--	--	--	--	1,452	0	29,159	10	303,344
	2019	326,179	85	--	--	--	--	1,485	0	56,219	15	383,883
	2020	384,737	91	--	--	--	--	2,664	1	36,083	9	423,484
	2021	311,866	84	--	--	--	--	1,677	0	57,567	16	371,110
	2022	314,039	79	--	--	--	--	533	0	84,399	21	398,971
	2023	336,237	83					1,035	0	68,691	17	405,963
Lakewide	2014	5,454,662	62	2,914,524	33	87,511	1	185,361	2	149,669	2	8,791,727
Totals	2015	4,460,298	65	2,190,473	32	94,225	1	87,613	1	76,597	1	6,909,206
	2016	4,481,964	62	2,201,486	30	397,044	5	114,763	2	28,078	0	7,223,335
	2017	4,982,989	64	2,387,352	31	255,605	3	123,413	2	39,598	1	7,788,958
	2018	4,613,972	68	1,975,935	29	107,789	2	55,537	1	29,159	0	6,782,393
	2019	3,243,111	73	1,111,766	25	15,745	0	40,437	1	56,219	1	4,467,278
	2020	2,128,688	69	834,994	27	84,613	3	20,685	1	36,083	1	3,105,063
	2021	2,181,138	66	967,114	29	69,575	2	20,615	1	57,567	2	3,296,009
	2022	2,195,116	65	988,239	29	67,667	2	64,405	2	84,399	2	3,399,826
	2023	2,522,918	59	1,553,565	36	104,388	2	55,573	1	68,691	2	4,305,135

*processor weight (quota debit weight) to 2001; fisher/observer weight from 2002 to 2023 (negating ice allowance).

Table 1.2. Harvest, effort and harvest per unit effort summaries for Lake Erie Yellow Perch fisheries in Management Unit 1 (Western Basin) by agency and gear type, 2014-2023.

	Year	Unit 1					
		Michigan	Ohio		Ontario Gill Nets		$\begin{gathered} \hline \text { Ontario } \\ \hline \text { Trap Nets } \\ \hline \end{gathered}$
		Sport	Trap Nets	Sport	Small Mesh	Large Mesh*	
Harvest (pounds)	2014	87,511	0	391,361	596,956	23,633	78
	2015	94,225	0	485,744	533,167	8,712	59
	2016	397,044	103,345	782,723	938,558	8,445	49
	2017	255,605	447,263	792,312	1,271,282	5,466	839
	2018	107,789	439,720	516,296	1,248,042	14,031	156
	2019	15,745	193,243	164,290	818,773	28,670	33
	2020	84,613	136,555	254,676	853,096	4,463	2
	2021	69,575	182,521	443,266	939,063	20,179	17
	2022	67,667	188,739	470,196	756,770	13,706	0
	2023	104,388	414,728	840,199	1,001,296	15,249	0
Harvest (Metric) (tonnes)	2014	40	0	177	271	11	0.04
	2015	43	0	220	242	4	0.03
	2016	180	47	355	426	4	0.02
	2017	116	203	359	577	2	0.38
	2018	49	199	234	566	6	0.07
	2019	7	88	75	371	13	0.01
	2020	38	62	115	387	2	0.00
	2021	32	83	201	426	9	0.01
	2022	31	86	213	343	6	0.00
	2023	47	188	381	454	7	0.00
Effort (a)		76,996	0	630,989	3,398	362	--
	2015	137,246	0	659,460	4,074	508	--
	2016	251,426	2,446	824,418	6,091	431	--
	2017	204,877	3,830	775,334	5,656	600	--
	2018	137,930	3,500	500,695	5,143	667	--
	2019	57,929	3,811	284,068	6,363	714	--
	2020	151,528	3,341	500,595	9,183	393	--
	2021	113,935	3,741	628,491	10,489	1,124	--
	2022	115,916	4,943	621,067	8,588	1,354	--
	2023	97,889	6,696	923,523	7,212	1,020	--
Harvest Rates (b)	2014	2.2	--	3.0	79.7	29.6	--
	2015	2.7	--	3.1	59.4	7.8	--
	2016	4.8	19.2	4.1	69.9	8.9	--
	2017	4.3	53.0	3.4	101.9	4.1	--
	2018	2.3	57.0	2.9	110.1	9.5	--
	2019	0.8	23.0	1.7	58.4	18.2	--
	2020	1.8	18.5	1.6	42.1	5.2	--
	2021	1.7	22.1	2.0	40.6	8.1	--
	2022	1.5	17.3	2.1	40.0	4.6	--
	2023	3.0	28.1	2.9	63.0	6.8	--

(a) sport effort in angler-hours; gill net effort in km; trap net effort in lifts
(b) harvest rates for sport in fish/hr, gill net in kg/km, trap net in kg/lift
(c) the Ontario sport fishery harvested approximately 19,579 Ibs of yellow perch in the 2014 creel survey
(*) large mesh catch rates are not targeted and are therefore of limited value.

Table 1.3. Harvest, effort and harvest per unit effort summaries for Lake Erie Yellow Perch fisheries in Management Unit 2 (western Central Basin) by agency and gear type, 2014-2023.

	Year	Unit 2				
		Ohio		Ontario Gill Nets		Ontario Trawls
		Trap Nets	Sport	Small Mesh	Large Mesh*	
Harvest (pounds)	2014	1,280,184	263,042	1,550,722	128,453	0
	2015	1,005,061	126,932	1,471,107	18,268	58
	2016	688,033	104,836	1,248,729	34,631	19
	2017	590,447	53,107	1,435,508	62,872	57
	2018	528,234	30,888	1,204,621	66,744	0
	2019	419,631	13,846	569,850	170,640	0
	2020	248,721	19,492	376,946	30,604	3
	2021	116,109	5,091	151,859	53,518	0
	2022	97,659	20,201	152,490	25,429	0
	2023	64,854	11,415	189,619	21,097	0
Harvest (Metric) (tonnes)	2014	581	119	703	58	0.0
	2015	456	58	667	8	0.0
	2016	312	48	566	16	0.0
	2017	268	24	651	29	0.0
	2018	240	14	546	30	0.0
	2019	190	6	258	77	0.0
	2020	113	9	171	14	0.0
	2021	53	2	69	24	0.0
	2022	44	9	69	12	0.0
	2023	29	5	86	10	0.0
Effort (a)	2014	5,713	280,018	6,653	1,816	--
	2015	6,309	217,637	9,459	1,207	--
	2016	4,510	204,745	6,424	1,934	--
	2017	2,567	119,163	6,094	1,946	--
	2018	1,551	45,683	5,964	2,155	--
	2019	2,192	24,826	4,431	4,050	--
	2020	2,177	27,006	4,294	1,920	--
	2021	839	1,898	1,951	2,999	--
	2022	1,571	26,634	1,479	1,881	--
	2023	289	4,011	1,593	1,756	--
Harvest Rates(b)	2014	101.6	2.7	105.7	32.1	--
	2015	72.2	1.5	70.5	6.9	--
	2016	69.2	1.2	88.2	8.1	--
	2017	104.3	0.8	106.8	14.7	--
	2018	154.5	0.8	91.6	14.0	--
	2019	86.8	0.4	58.3	19.1	--
	2020	51.8	1.1	39.8	7.2	--
	2021	62.8	0.1	35.3	8.1	--
	2022	28.2	0.5	46.8	6.1	--
	2023	101.8	0.7	54.0	5.4	--

(a) sport effort in angler-hours; gill net effort in km; trap net effort in lifts
(b) harvest rates for sport in fish/hr, gill net in $\mathrm{kg} / \mathrm{km}$, trap net in $\mathrm{kg} / \mathrm{lift}$
(c) the Ontario sport fishery harvested approximately 6,825 Ibs of yellow perch in the 2014 creel survey
(*) large mesh catch rates are not targeted and therefore of limited value

Table 1.4. Harvest, effort and harvest per unit effort summaries for Lake Erie Yellow Perch fisheries in
Management Unit 3 (eastern Central Basin) by agency and gear type, 2014-2023.

[^0]Table 1.5. Harvest, effort and harvest per unit effort summaries for Lake Erie Yellow Perch fisheries in Management Unit 4 (Eastern Basin) by agency and gear type, 2014-2023.

(a) sport effort in angler-hours; gill net effort in km; trap net effort in lifts
(b) harvest rates for sport in fish/hr, gill net in $\mathrm{kg} / \mathrm{km}$, trap net in $\mathrm{kg} / \mathrm{lift}$
(c) the Ontario sport fishery harvested approximately 21,361 lbs of yellow perch in the 2014 creel survey
(*) large mesh catch rates are not targeted and therefore of limited value
Table 1.6. Estimated 2023 Lake Erie Yellow Perch harvest by age and numbers of fish by gear and management unit (Unit).

Gear	Age	Unit 1		Unit 2		Unit 3		Unit 4		Lakewide	
		Number	\%								
Gill Nets	1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
	2	2,282,172	64.5	215,106	33.5	382,418	12.6	125,292	13.6	3,004,989	37.0
	3	902,357	25.5	172,300	26.8	986,584	32.6	498,041	54.2	2,559,283	31.5
	4	265,839	7.5	236,173	36.7	1,537,507	50.8	258,623	28.2	2,298,142	28.3
	5	64,622	1.8	15,149	2.4	75,370	2.5	15,973	1.7	171,114	2.1
	6+	25,969	0.7	3,980	0.6	47,437	1.6	20,616	2.2	98,001	1.2
	Total	3,540,960	45.7	642,708	80.0	3,029,316	82.9	918,546	88.0	8,131,529	61.4
Trap Nets	1		0.0		0.0	0	0.0	0	0.0	0	0.0
	2	715,060	56.5	13,973	9.8	216,901	35.2	1,478	4.0	947,412	45.9
	3	354,788	28.0	37,759	26.4	76,718	12.4	14,286	38.7	483,551	23.4
	4	120,556	9.5	62,931	44.1	169,952	27.6	13,547	36.7	366,986	17.8
	5	65,715	5.2	19,199	13.4	64,957	10.5	2,463	6.7	152,334	7.4
	6+	9,807	0.8	8,961	6.3	88,041	14.3	5,172	14.0	111,981	5.4
	Total	1,265,926	16.3	142,823	17.8	616,569	16.9	36,946	3.5	2,062,264	15.6
Sport	1	27,529	0.9	563	3.2	210	2.6	454	0.5	28,755	0.9
	2	1,765,833	60.0	5,367	30.5	2,354	29.5	4,836	5.5	1,778,390	58.2
	3	719,741	24.5	1,929	11.0	1,037	13.0	31,551	35.8	754,257	24.7
	4	197,172	6.7	2,376	13.5	1,368	17.1	24,756	28.1	225,672	7.4
	5	203,757	6.9	1,355	7.7	691	8.7	4,535	5.1	210,338	6.9
	6+	29,169	1.0	6,023	34.2	2,327	29.1	21,954	24.9	59,473	1.9
	Total	2,943,200	38.0	17,613	2.2	7,987	0.2	88,085	8.4	3,056,885	23.1
All Gear	1	27,529	0.4	563	0.1	210	0.0	454	0.0	28,755	0.2
	2	4,763,065	61.5	234,446	29.2	601,673	16.5	131,606	12.6	5,730,791	43.2
	3	1,976,886	25.5	211,988	26.4	1,064,339	29.1	543,878	52.1	3,797,091	28.7
	4	583,568	7.5	301,480	37.5	1,708,827	46.8	296,926	28.5	2,890,800	21.8
	5	334,094	4.3	35,703	4.4	141,018	3.9	22,971	2.2	533,786	4.0
	6+	64,944	0.8	18,964	2.4	137,805	3.8	47,742	4.6	269,455	2.0
	Total	7,750,086	58.5	803,144	6.1	3,653,872	27.6	1,043,577	7.9	13,250,678	100.0

Note: Values in italics delineate harvest percentage by gear in each Unit, while the values in the 'All Gear' boxes are for lakewide harvest percentage by Unit.
Table 1．7．Yellow Perch stock size（millions of fish）in each Lake Erie management unit．Estimated abundance in the years 2005 to 2023 and projected abundance in 2024 from the ADMB catch－age analysis．

$\underset{N}{\underset{N}{N}}$	국 웅응 융응 	$\begin{aligned} & \text { Nop } \\ & \text { Non } \\ & \text { in m } \end{aligned}$	$\text { } \circ \stackrel{\sim}{\sim}$	$\begin{aligned} & \dot{\sim} \stackrel{\infty}{\dot{N}} \\ & \dot{\sim} \underset{\sim}{\dot{\sim}} \end{aligned}$				
$\begin{gathered} \underset{N}{N} \end{gathered}$		寺	 	－r				$\stackrel{\circ}{\circ} \stackrel{\text { N }}{\substack{\text { ¢ }}}$
$\underset{N}{N}$	NNNN － 0 mo		 	Nơ		$\begin{gathered} \stackrel{\rightharpoonup}{N} \underset{\sim}{\sim} \\ \underset{\gamma}{\sim} \\ \end{gathered}$		긍
$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$		$\begin{aligned} & \stackrel{m}{\lambda} \\ & \stackrel{\circ}{\dot{o}} \underset{\sim}{\underset{\sim}{\sim}} \end{aligned}$				Nّ		$\stackrel{N}{o}$
ONN	요 융 N No OO	¢		No				$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$
$\stackrel{\rightharpoonup}{\mathbf{N}}$		$\begin{gathered} \circ \\ \\ \underset{\sim}{N} \\ \end{gathered}$		$\begin{aligned} & \hat{0}_{\infty}^{\infty} \\ & \underset{\sim}{\circ} \\ & \underset{\sim}{\infty} \end{aligned}$				$$
$\stackrel{\infty}{\underset{\sim}{\mathrm{N}}}$		$\begin{aligned} & \text { Qon } \\ & \stackrel{N}{N} \\ & \underset{\sim}{\oplus} \end{aligned}$				$\begin{aligned} & \text { N in } \\ & \hat{6} \\ & \text { in } \\ & \text { in } \end{aligned}$		
$\stackrel{\mathrm{N}}{\mathbf{N}}$		웄숯		©				$\stackrel{\sim}{\sim}$
$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$		$\stackrel{\sim}{\sim}$			min		 	$\underset{\sim}{\text { ¢ }}$
$\begin{aligned} & n \\ & \stackrel{n}{0} \end{aligned}$		へへ				¢ \％		$\underset{\sim}{\underset{\sim}{\underset{N}{N}} \underset{\sim}{\star}}$
$\underset{N}{\underset{N}{*}}$		¢ $\stackrel{\sim}{\sim}$ $\underset{\sim}{\infty}$		N		坴		セio
$\stackrel{\sim}{\mathrm{N}}$		$\stackrel{-}{\infty}$ $\stackrel{\infty}{\circ}$ $\stackrel{\circ}{\dagger}$		へio		¢		
$\underset{\sim}{N}$		으N		宮寺				ণi大ֵN
$\stackrel{\rightharpoonup}{\mathrm{N}}$		$\begin{aligned} & \text { No o } \\ & i n \\ & \text { óm } \end{aligned}$		M			 －mio	侖令
$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}$		$\begin{aligned} & \exists \begin{array}{l} \text { a } \\ \underset{\sim}{N} \\ \text { in } \end{array} \end{aligned}$			승융수ㅅㅜㅠㄱ ヘi			
$\stackrel{0}{0}$	응 능 형눙 웅 लंबーテ	$\begin{aligned} & \text { O} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{N} \\ & \underset{\sim}{N} \end{aligned}$		$\begin{aligned} & \text { Nö } \\ & \text { or } \\ & \text { it } \end{aligned}$				
$\stackrel{\infty}{\circ}$	Hin No No No N N N $\underset{\sim}{\top} へ 0 \mathrm{om}$		 	－${ }_{\text {－}}^{\text {O }}$			mmóio	へิָ
$\begin{aligned} & \hat{\circ} \\ & \hline \mathbf{N} \end{aligned}$								$\begin{aligned} & N \\ & \underset{\sim}{\circ} \mathrm{O} \\ & \text { in } \end{aligned}$
$\begin{aligned} & \circ \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \text { or } \\ & \text { ָ } \\ & \text { gi } \end{aligned}$			$\infty \times \infty$			$\stackrel{\sim}{N} \stackrel{n}{\stackrel{N}{\circ}}$
$\begin{aligned} & 0 \\ & \hline 0 \end{aligned}$				$\begin{aligned} & \infty 0_{0}^{N} \\ & \text { N } \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$				$\begin{aligned} & \dot{\sim} \underset{\sim}{\infty} \underset{\sim}{\infty} \\ & \end{aligned}$
$\stackrel{0}{8}$	Nのナー +		Nのナレ＋		Nのナー		Nツナレ＋	
	$\begin{aligned} & \text { ت- } \\ & \stackrel{\text { n }}{5} \end{aligned}$		$\begin{aligned} & \mathbf{N} \\ & \stackrel{1}{5} \\ & \hline \end{aligned}$		n $\stackrel{4}{5}$		$\begin{aligned} & \pm \\ & \stackrel{t}{5} \end{aligned}$	

Table 2.1. Parameters of the stock-recruitment relationship, spawning stock biomass, limit reference point and target fishing rate for each management unit.

Unit	Spawn/ Recruit RelationshipParameters			Spawning Stock Biomass(Unfished Population)		Spawning Stock Biomass (kgs)		Biomass at MSY (Limit Reference Point)			Fishing Rate			
	log(alpha)	beta	sigma	SSB ${ }_{0}$	$\mathbf{s d}\left(\operatorname{logSSB}{ }_{0}\right)$	2024	$2025{ }^{(a)}$	$\mathrm{B}_{\text {msy }}$	\%SSB ${ }_{0}$	P	$\mathrm{F}_{\text {msy }}$	\% $\mathrm{F}_{\text {msy }}$	$F_{\text {target }}$	$F_{\text {actual }}$
MU1	2.48	$2.55 \mathrm{E}-07$	0.97	8,014,090	0.20	5,218,700	5,774,530	2,192,760	27\%	0.00	1.54	28\%	0.431	0.431
MU2	2.17	1.40E-07	0.97	14,152,966	0.22	6,365,940	5,401,060	3,987,859	28\%	0.11	1.77	35\%	0.620	0.620
MU3	2.21	1.42E-07	0.97	13,297,953	0.20	6,279,750	6,009,320	3,704,558	28\%	0.03	1.80	32\%	0.576	0.576
MU4	1.98	1.20E-06	1.02	1,626,858	0.25	1,052,110	1,062,740	461,961	28\%	0.00	1.60	34\%	0.544	0.544

Table 2.2. Estimated harvest range of Lake Erie Yellow Perch for 2024 using the proposed fishing policy and selectivity-at-age from combined fishing gears.

	Age	2024Stock Size (millions of fish)			2024 Mean Biomass mil. Ibs	Exploitation Rate				2024Catch (millions of fish)			3-yr Mean Weight in Harvest (kg)	2024 Harvest Range Catch (millions of Ibs)		
		Min.	Mean	Max.		F	s(age)	F(age)	(u)	Min.	Mean	Max.		Min.	Mean	Max.
Unit 1	2	14.006	21.421	28.837	4.893	0.431	0.174	0.075	0.060	0.836	1.279	1.721	0.125	0.230	0.352	0.474
	3	26.736	34.604	42.472	11.047	0.431	0.571	0.246	0.181	4.848	6.275	7.702	0.153	1.635	2.117	2.598
	4	2.290	3.056	3.823	1.252	0.431	0.899	0.388	0.268	0.614	0.820	1.025	0.183	0.248	0.331	0.414
	5	0.241	0.365	0.489	0.170	0.431	1.000	0.431	0.293	0.070	0.107	0.143	0.227	0.035	0.053	0.072
	6+	0.057	0.105	0.153	0.059	0.431	0.384	0.166	0.126	0.007	0.013	0.019	0.271	0.004	0.008	0.012
	Total	43.330	59.552	75.774	17.420				0.143	6.376	8.494	10.611	0.153	2.149	2.861	3.569
	(3+)	29.324	38.130	46.937	12.528				0.189	5.540	7.215	8.890	0.158	1.923	2.509	3.095
Unit 2	2	7.110	9.836	12.562	2.472	0.620	0.083	0.051	0.041	0.294	0.407	0.520	0.141	0.092	0.127	0.162
	3	20.654	24.346	28.039	9.275	0.620	0.400	0.248	0.183	3.769	4.443	5.117	0.160	1.330	1.567	1.805
	4	4.463	5.197	5.930	2.666	0.620	0.775	0.480	0.319	1.425	1.659	1.893	0.193	0.606	0.706	0.806
	5	2.590	3.017	3.443	1.831	0.620	0.985	0.610	0.384	0.995	1.159	1.322	0.215	0.472	0.549	0.627
	6+	1.614	1.918	2.222	1.464	0.620	1.000	0.620	0.388	0.627	0.745	0.863	0.310	0.429	0.509	0.590
	Total	36.431	44.314	52.196	17.708				0.190	7.110	8.413	9.716	0.186	2.922	3.458	3.989
	(3+)	29.321	34.478	39.634	15.236				0.232	6.816	8.006	9.196	0.189	2.836	3.332	3.827
Unit 3	2	7.979	11.978	15.978	2.181	0.576	0.027	0.016	0.013	0.103	0.155	0.207	0.131	0.030	0.045	0.060
	3	26.392	32.490	38.587	9.290	0.576	0.240	0.138	0.107	2.823	3.475	4.128	0.150	0.934	1.149	1.365
	4	5.543	6.798	8.054	2.791	0.576	0.608	0.350	0.246	1.366	1.676	1.985	0.171	0.515	0.632	0.748
	5	3.215	4.136	5.057	2.122	0.576	0.850	0.490	0.324	1.042	1.341	1.639	0.196	0.450	0.579	0.708
	6+	0.860	1.196	1.532	0.906	0.576	1.000	0.576	0.368	0.316	0.440	0.563	0.256	0.178	0.248	0.318
	Total	43.989	56.598	69.206	17.290				0.125	5.652	7.087	8.523	0.170	2.104	2.654	3.200
	(3+)	36.010	44.620	53.229	15.108				0.155	5.548	6.932	8.316	0.171	2.078	2.609	3.140
Unit 4		2.304	3.860	5.416	0.949	0.544	0.090	0.049	0.039	0.091	0.152	0.213	0.139	0.028	0.047	0.065
	3	1.640	2.166	2.692	0.966	0.544	0.404	0.220	0.164	0.268	0.355	0.441	0.159	0.094	0.124	0.154
	4	1.192	1.616	2.041	0.934	0.544	0.842	0.458	0.308	0.367	0.497	0.628	0.174	0.141	0.191	0.241
	5	0.295	0.460	0.625	0.322	0.544	1.000	0.544	0.352	0.104	0.162	0.220	0.216	0.049	0.077	0.105
	6+	0.065	0.107	0.150	0.091	0.544	0.784	0.426	0.290	0.019	0.031	0.044	0.277	0.011	0.019	0.027
	Total	5.496	8.210	10.924	3.262				0.146	0.848	1.197	1.545	0.173	0.323	0.458	0.592
	(3+)	3.192	4.350	5.508	2.313				0.240	0.758	1.045	1.332	0.178	0.296	0.411	0.527

Table 2.3. Lake Erie Yellow Perch fishing rates and the Recommended Allowable Harvest (RAH; in millions of pounds) for 2024 by Management Unit (Unit). RAH values are calculated in Table 2.2. RAH values may be subject to a limit on the annual change in TAC ($\pm 20 \%$).

Unit	Fishing Rate	Recommended Allowable Harvest (millions Ibs.)			$\pm 20 \%$ of previous year TAC	
		MIN	MEAN	MAX	MIN (-20\%)	MAX (+20\%)
1	0.431	2.149	2.861	3.569	1.944	2.916
2		See Text Page 9			0.382	0.572
3	0.576	2.104	2.654	3.200	2.466	3.698
4	0.544	0.323	0.458	0.592	0.467	0.701

Figure 1.1. The Yellow Perch Management Units (MUs) of Lake Erie defined by the YPTG and LEC, for illustrative

Management Unit 3
 targeted effort with small mesh ($<3^{\prime \prime}$).

Figure 1.3.

Figure 1.5. Spatial distribution of Yellow Perch total harvest (lbs.) in 2023 by 10-minute grid.

Figure 1.6. Spatial distribution of Yellow Perch small mesh gill net effort (km) in 2023 by 10-minute grid.

Figure 1.7. Spatial distribution of Yellow Perch sport effort (angler hours) in 2023 by 10-minute grid.

Figure 1.8. Spatial distribution of Yellow Perch trap net effort (lifts) in 2023 by 10-minute grid.

Figure 1.9. Lake Erie Yellow Perch population estimates by management unit for age 2 (dark bars) and ages $3+$ (light bars), 1975 to 2024, from the ADMB model.

(s) əqey pexiadis

(S) əqey ןenianhs

(S) əyey ןeximans

(s) әqey pexiadns

Figure 2.1. Calculations for subunit areas in the Yellow Perch Task Group Management Units.

Appendix Table 1. Expert Opinion (EO) Lambda (λ) values and relative number of terms associated with catch-at-age analysis data sources by management unit (Unit).

Unit	Data Source	λ	Relative Number of Terms
1	Commercial Gill Net Effort	0.8	1
	Sport Effort	0.7	1
	Commercial Trap Net Effort	0.5	1
	Commercial Gill Net Harvest	1.0	5
	Sport Harvest	0.9	5
	Commercial Trap Net Harvest	0.7	5
	Trawl Survey Catch Rates	1.0	5
	Partnership Gill Net Index Catch Rates	1.0	5
2	Commercial Gill Net Effort	0.8	1
	Sport Effort	0.8	1
	Commercial Trap Net Effort	0.6	1
	Commercial Gill Net Harvest	1.0	5
	Sport Harvest	0.9	5
	Commercial Trap Net Harvest	0.7	5
	Trawl Survey Catch Rates	0.9	5
	Partnership Gill Net Index Catch Rates	1.0	5
3	Commercial Gill Net Effort	0.8	1
	Sport Effort	0.8	1
	Commercial Trap Net Effort	0.6	1
	Commercial Gill Net Harvest	1.0	5
	Sport Harvest	0.8	5
	Commercial Trap Net Harvest	0.6	5
	Trawl Survey Catch Rates	1.0	5
	Partnership Gill Net Index Catch Rates	1.0	5
4	Commercial Gill Net Effort	0.8	1
	Sport Effort	0.7	1
	Commercial Trap Net Effort	0.6	1
	Commercial Gill Net Harvest	1.0	5
	Sport Harvest	0.7	5
	Commercial Trap Net Harvest	0.6	5
	NY Gill Net Survey Catch Rates	1.0	5
	Partnership Gill Net Index Catch Rates	0.9	5

Appendix Table 2. Surveys selected by multi-model inference (MMI) age-2 recruitment

MU	Survey	Parameter Estimate	Number of Models
MU1	OHF10	0.223	1
	OOS11	0.594	2
	(Intercept)	13.560	2
MU2	OHF21	0.037	1
	OHF20	0.268	2
	OPSF21	0.301	2
	(Intercept)	14.804	2
MU3	OHJ31A	0.262	1
	OPSF31	0.310	1
	(Intercept)	14.899	1
	OPSF41	-0.017	1
	NYGN41	-0.028	1
	NYF41	0.451	3
	LPC41	0.270	3
	(Intercept)	13.208	3

Appendix Table 4. Lakewide recruitment index codes and series names used in Appendix Tables 2 and 3. All series are reported in arithmetic mean catch per hectare, except LPS41, NYGN41, and OPSF11-41, gill net indices which are reported in mean catch per lift.
Abbreviations in Appendix Table 3 ending with a ' B ' represent survey indices blocked by depth strata.

Abbreviation	Series
OHF10	Ohio Management Unit 1 fall age 0
OHF11	Ohio Management Unit 1 fall age 1
OOS10	Ontario/Ohio Management Unit 1 summer age 0
OOS11	Ontario/Ohio Management Unit 1 summer age 1
OHF20	Ohio Management Unit 2 fall age 0
OHF21	Ohio Management Unit 2 fall age 1
OHF30	Ohio Management Unit 3 fall age 0
OHF31	Ohio Management Unit 3 fall age 1
OHJ21	Ohio Management Unit 2 June age 1
OHJ31	Ohio Management Unit 3 June age 1
LPC40	Long Point Composite Management Unit 4 age 0
LPC41	Long Point Composite Management Unit 4 age 1
NYF40	New York Management Unit 4 fall trawl age 0
NYF41	New York Management Unit 4 fall trawl age 1
NYGN41	New York Management Unit 4 gill net age 1
OPSF11	Ontario Partnership Gill Net Management Unit 1 fall age 1
OPSF21	Ontario Partnership Gill Net Management Unit 2 fall age 1
OPSF31	Ontario Partnership Gill Net Management Unit 3 fall age 1
OPSF41	Ontario Partnership Gill Net Management Unit 4 fall age 1

[^0]: (a) sport effort in angler-hours; gill net effort in km; trap net effort in lifts
 (b) harvest rates for sport in fish/hr, gill net in $\mathrm{kg} / \mathrm{km}$, trap net in $\mathrm{kg} / \mathrm{lift}$
 (c) the Ontario sport fishery harvested approximately 132,585 lbs of yellow perch in the 2014 creel survey
 (*) large mesh catch rates are not targeted and therefore of limited value

