Science Transfer


The goal of the Science Transfer Program (STP) is to improve fishery management to successfully achieve fish community objectives by identifying science and science products that can inform management needs, and making science accessible to managers for decision-making.


Science transfer products differ from typical research products in that they are easily accessible decision and communication support tools, such as fact sheets, slide decks, graphical figures, decision trees, or video vignettes that convey synthesized, scientifically rigorous material in simple and concise ways. Browse and download STP products from the STP Toolkit.


The Science Transfer Program is advised by a Science Transfer Board (STB) consisting of fishery managers, sea lamprey control agents, and scientists. Rather than issuing a competitive call for proposals, The STB identifies and prioritizes fishery management and sea lamprey control issues requiring science transfer through a "horizon scan" process. Ideas are solicited from the Council of Lake Committees, Sea Lamprey Control Board, and the broader Great Lakes management and science communities, as well as stakeholders and industry partners. This list of ideas is prioritized by fishery managers and sea lamprey control agents on the STB in late December each year; high-priority ideas are developed into one-page “issue statements” that are reviewed the following April. The STB selects from these issue statements a portfolio of projects for further development, with full project plans reviewed each October and funding recommendations made to the Commission in December. See the full project development process.

If you have a project idea or management issue that could be informed by existing science, please contact the science program. External project ideas should be submitted by December 1 to be considered in the upcoming cycle's horizon scan (e.g., submit by December 1, 2022 for consideration for FY2024 funding) using the Project Interest Form.


Using stock assessment information to inform harvest policy in data-limited fisheries

Project leader: Jones, M.

This project will develop and demonstrate the capacity to guide discussions about assessment and management of data-limited fisheries in the Great Lakes, based on a tool named FishPath that has been developed by a team of international fisheries experts. The project team will apply FishPath to at least two selected case study fisheries, and engage managers and stakeholders in the FishPath process at two workshops, one in Canada and one in the US. At the end of the project, Quantitative Fisheries Center and commission staff will have been trained and gained practical experience with FishPath for potential future application in the Great Lakes, and a select group of managers and stakeholders will be in a position to assess the tool’s potential for future use.

Effective dissemination of Lake Erie walleye movement and distribution information for use by managers

Project leader: Hartman, T.

Woman holding large walleye at night

There are many completed, ongoing, and future walleye acoustic telemetry projects on Lake Erie to address various research questions; however, each individual project reports solely on walleye movement information associated with that project. Managers recognize that additional information could be gained by combining data across various research projects to address key questions, providing a more robust and complete picture of Lake Erie walleye movement patterns. The objective of this project is to combine and update existing telemetry information across studies in a dynamic, interactive tool to address: 1) what proportion of tagged walleye move into various regions of Lake Erie post-spawning, and 2) how are walleye seasonally distributed in Lake Erie? Products will include a process for combining detection data across projects, a process for generating products to address the questions above, and an updated, customizable report for use by managers, housed on the GLATOS website.

Developing consistency in interpretation and communication of non-target mortality associated with lampricide treatments

Project leader: Kaye, C.

Lampricides are highly species-specific and while rare, lampricide applications can kill aquatic species other than sea lampreys; this is called "non-target mortality." The goal of this project is to better understand non-target mortality caused by lampricides, based on science and rooted in an understanding of risks and benefits, and to clearly communicate goals, methods, and effects of the sea lamprey control program. Data from laboratory studies and stream observations will be analyzed and used to better quantify how likely and severe non-target mortality could be, set expectations for observers, and help inform management decisions (for example, during lampricide applications in areas with threatened or endangered species). Knowledge gained during the project will be used to develop clear messages for control agents to use regarding non-target mortality from lampricides.

Interactive tool for visualizing fish stocking events and recoveries in the Great Lakes

Project leader: Cottrill, A.

An interactive, online tool will be developed for Great Lakes fishery managers to visualize fish stocking events and recoveries. Fish stocking is an important method used by resource management agencies to restore and improve fish populations in support of Fish Community Objectives. More than 400 million fish have been stocked into the Great Lakes and their tributaries in the past 10 years alone. Although these stocking events are reported to the Commission and available in a database maintained by the U.S. Fish and Wildlife Service, the database is not interactive. This project uses existing tools and data to produce an interactive, web-based visualization of Great Lakes fish stocking events. Once completed, managers, agency staff, and the public will be able to visualize and interact with data on where and when fish are stocked and recovered. The interactive fish stocking tool will allow fishery managers to make more strategic decisions related to stocking programs and to communicate with their stakeholders.

From fish movement to knowledge movement: Understanding and improving science transfer related to telemetry

Project leader: Cooke, S.

Researchers use acoustic telemetry to collect information about fish movements (e.g., migration patterns, habitat use, survival). An acoustic telemetry system consists of two main components: transmitters and receivers. Transmitters are electronic tags, attached to or surgically implanted in a fish, that broadcast a series of “pings” (sound pulses) into the surrounding water. Receivers are small, data-logging computers anchored near the bottom of a lake or river that “listen” for tagged fish. When a signal is identified, the tag’s unique ID code is saved with the date and time. The Commission has invested millions of dollars since 2010 in the Great Lakes Acoustic Telemetry Observation System (GLATOS). This project seeks to understand and improve how acoustic telemetry data are used in Great Lakes fishery management decision-making. The project will identify barriers to and opportunities for telemetry knowledge use by surveying fisheries managers, clearly communicate technical aspects of telemetry including opportunities and limitations, share GLATOS success stories through management briefs, and increase relevancy of telemetry by identifying lake-specific information needs.

Previously-funded projects

Uses and limitations of environmental DNA (eDNA) in fisheries management

Project leader: Welsh, A.


  • Environmental DNA (eDNA) is an effective sampling tool for species detection, complementing other traditional sampling techniques.
  • The uses and limitations of this technique need to be effectively communicated to both agency personnel (i.e., managers, biologists) and the public.
  • Deliverables are provided in a variety of formats so the information can be tailored to the appropriate audience and context.

Changes in nutrient status and energy flow through lower trophic levels: Implications for Great Lakes fishery managers

Project leader: Stewart, T.


  • A conceptual model was developed describing the influences of changes in water quality, food web structure, and fisheries management activities on Great Lake fish and fisheries.
  • Synthesis of the literature and direct observations from Great Lakes studies confirmed a positive relationship between the total amount of total fish biomass and nutrient concentration.
  • Food web structure, fish management activities and increased water clarity can aggravate or mitigate the influence of declining nutrients.
  • Concepts developed during the synthesis process and from the workshop will facilitate further discussions among Great Lakes stakeholders to refine the concepts, find mutually agreeable ecosystem goals, and the means to achieve them.
  • Many of the mass-balanced descriptions of Great Lakes food webs remain unpublished, others are outdated, and this needs to be corrected. Food web studies requires the integration of large amounts of multi-trophic level, multi-scale data which introduces considerable uncertainty. Methods exist for adequately accounting and understanding the consequence this uncertainty, such as linear inverse modelling (van Oevelen et al. 2010), and can be adapted to existing Great Lakes food web data (Hossain et al. 2017). Applying these methods to existing mass-balance descriptions of Great Lakes food webs would allow a more fulsome exploration of uncertainty and its consequences. Integrating isotope and biomass size spectra approaches may be another independent method to assess Great Lakes food web attributes (Jennings et al., 2002, Trebilco et al., 2013).
  • Potential fish production is lower in nutrient poor systems, and as many Great Lakes ecosystems shift from mesotrophic to oligotrophic, not all fish species can be supported at historical levels, while others may thrive. However, highly functioning ecosystems and productive and diverse quality fisheries are still possible. It will be a challenge for managers to adjust their expectations and those of their clients, and to innovate and adapt their fisheries management practices.

Alternative barrier technologies: History as a control tool

Project leader: Zielinski, D.


  • The Great Lakes Fishery Commission’s sea lamprey control program has generated a technologically diverse set of barrier designs that focus on influencing or exploiting a single behavioral (e.g., non-physical barriers), phenological (e.g., seasonal barriers), physiological (e.g., fixed-crest and velocity barriers), or morphological (e.g., screens and weirs) attributes to block or trap sea lamprey.
  • The fixed-crest barrier has the longest history of effectively blocking sea lamprey passage; owed, in part, to its relatively straightforward design.
  • The next most common designs, adjustable-crest and seasonally operated barriers utilize a similar blocking mechanism as fixed-crest barriers but have higher costs associated with staffing and risks associated with automated operation.
  • Alternatives barrier technologies such as resistance weirs, velocity barriers, and vertical mount electrodes with pulsed direct current have been shown, at least experimentally, to have potential to block sea lamprey passage; however, none have been deployed yet at a management scale.
  • The lesson learned from the history of sea lamprey barriers is that great caution should be exercised prior to implementing new and experimental barrier technologies at the management scale.

Accounting for potential effects on fish production from barrier removals to inform management decisions: an application of structured decision making.

Project leader: Jones, M.


  • Structured Decision Making (SDM) is a useful tool to help managers, stakeholders, and researchers discuss and make effective decisions on complex fishery issues, including barrier removals in the Great Lakes.
  • Modeling and field studies lend insight into the expected effects of dam removals on fish populations and communities, but many critical uncertainties remain that are important to consider in the SDM process.

STP completion reports can be accessed through the Publication Search.

Water sampling picture courtesty of ACRCC